Math 210C Lecture 20 Notes

Daniel Raban

May 17, 2019

1 Ext Functors, Extensions, and Group Cohomology

1.1 Exactness of the localization functor

Proposition 1.1. If R is a ring and S C R is multiplicatively closed, then localization by
S is an exact functor R-Mod — S™!R-Mod.

Corollary 1.1. S7'R is a flat R-module.
Proof. ST1A~ STIR @R A. O

1.2 Ext functors

Definition 1.1. let R, S be rings, and let A be an R-S-bimodule. The i-th Ext functor
Ext' : R-Mod — S-Mod is the i-th right derived functor of hy = Hompg(A4, ).

Example 1.1. Let R =Z and B = Z/nZ. Then we have the injective resolition

0 —— Z/nZ —— Q)7 —" Q/Z 0

To find Exty, A, Z/nZ), we have

Homy(A,Q/Z) 2 Homy (A, Q,Z)
=:AV

Then
AV[n] i=0
Exty (A, Z/nZ) = { AV/nAY i=1
0 1> 2.

The functor h? = Hompg(-, B) : (R-Mod)°P — Ab is right exact.

Theorem 1.1. Let A be an R-module. Then Exth(A, B) = H!(Hompg(P, B)), where
P — A is a projective resolution by R-modules.



1.3 Extensions of modules

Definition 1.2. An extension of an R-module B by an R-module A is an exact sequence

0 A E B 0

of R-modules.
Remark 1.1. Ext measures extensions.

Definition 1.3. Two extensions F, E’ of B by A are equivalent if there is an isomorphism
of exact sequences

0 A E B 0
lid l@ lid
0 A ol B 0

This is an equivalence relation. We denote the equivalence classes as £(B, A).

Example 1.2. Let A = B =7/pZ in Ab. Then we have the p (inequivalent) extensions

0 — Z/pZ —— Z/pZ & Z/pZ — ZL/pZ — 0

0 —— 2/pZ s 2)p?T — Z)pZ — 0
where 1 <i < p—1. So £(A, B)| = p, and ExtL(Z/pZ,7./pZ) = 7./ pZ.
How do we go back and forth between £(A, B) and Extk(A, B)? Given an extension

0 B E A 0

we can get
Homp(E, B) — Homp(B, B) —2— Ext!(A, B)

So if £ is the class of our extension, we can send &£ — 0(idp).
If u € Exth(A, B), we have

0 ker P A 0

where P is projective. This gives us an exact sequence
Homp(K, B) —2— Exth(A, B) —— 0 = ExthL(P, B)

So we can construct

0 K P A 0
I
0 B E A 0

where FE is the push-out of P and B over K.



Theorem 1.2. There exists a 1 to 1 corespondence between Ext'(A, B) for i > 1 and
equivalence classes of “Yoneda extensions” in Ex(A, B):

0 B K Ky K A 0

1.4 Group cohomology

Definition 1.4. Let G be a group, and let A be a Z[G]-module. The G-invariant group
of Ais A% = {a € A:ga =aVg € G}. The G-coinvariant group is Ag = A/IgA,
the largest quotient of A on which G acts trivially, where I is the augmentation ideal;
I = ker(€), where & : Z|G] — Z sendins Y agg — > ag.

Remark 1.2. The augmentation ideal is generated by g — 1 for g € G: Y a49 € I¢ <~
Yag=0. 50 asg—> ag=> as(g—1).

Example 1.3. Z is a trivial G-module with gn = n. Then Z¢ = Zg = 7.

Example 1.4. Consider Z|G]. Then

N¢g) G finite
216)° = | Ne=> g,
] {0 G infinite, “ geng

ZIGla = Z|G) /I = L.

Definition 1.5. The i-th cohomology group of G with coefficients in A (a Z[G]-module),
H'(G, A), is the ith right derived functor of M — MY on A. the i-th homology group
of G with coefficients in A (a Z[G]-module), H (G, A), is the ith left derived functor of
M — Mg on A.

We have the isomorphism
HOmz[G} (Z, A) eV_1> AG.

So hz = (-)4. So we get ‘ '
H'(G, A) = Exty(Z, A).

Similarly, we have the isomorphism Ag — Z ®zq 4, so we get
Hy(G, A) = Tt (7, A).
Definition 1.6. The bar resolution of Z in Z[G]-Mod is the free resolution
s Z[GY % 7(68) 2 7[6?) - 7[G, 7] —— Z —— 0

denoted C. — Z with C; = Z[G**!] and d; : C; — C;_1. Here,
di((g(bgl? cee agl>) = Z(_l)](goa cee 7/g\j7 cee 79])
§=0
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Then

0 —— Homyg)(Z[G], A) 2 Homge)(Z[G?], A) 2 -

=4

computes H'(G, A).
This gives an inhomogeneous cochain complex

0 —— C(G.A) —F (G A) —T -

where C*(G, A) = {f : G — A}, and
dzf(gﬂa 791) = gOf(gh)gl) +Z(71)]f(gla agi.] - 179“)92)
j=1
+ (_1)i+1f(gl7 cee 7gi—1)-

These complexes are isomorphic.

We have that A(G )
. YA

H' (G, A) = —1—<

(@, 4) Bi(G,A)’

where Z'(G, A) are called cocycles and B*(G, A) are called coboundaries.
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